INDIAN MARITIME UNIVERSITY
(A CENTRAL UNIVERSITY, GOVT. OF INDIA)

End Semester Examination December 2018
 B. Tech. (Marine Engineering)
 Semester - III
 Computational Mathematics (UG11T2301)

Date: $27-12-2018$	Max Marks: 100
Time: 3 Hrs.	Pass Marks: 50

PART-A
Marks: $\mathbf{1 0 \times 3 = 3 0}$

(All Questions are compulsory)

1. a. The equations of regression lines are $y=0.5 x+a$ and $x=0.4 y+b$ Calculate the coefficient of correlation.
b. What are the normal equations to fit a curve $y=a b^{x}$ by least square method?
C. Prove $E=e^{h D}$
d. Calculate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Simson's $\frac{1}{3}$ rd rule taking $h=0.25$.
e. Evaluate $\Delta\left(\tan ^{-1} x\right)$
f. Show that $x \cdot(x+y)=x$
g. Construct a polynomial for the following data

x	$:$	4	6	8	10
y	$:$	1	3	8	16

h. Construct a truth table for $(p \vee q) v \sim p$
i. Solve $y_{n+2}-4 y_{n+1}+3 y_{n}=5^{n}$
j. Solve $y_{n+3}-2 y_{n+2}-5 y_{n+1}+6 y_{n}=0$

(Answer any 5 of the following 7 questions)

2. a. Fit a a straight line to the following data

x	$:$	1	2	3	4	5	6	7	8	9
y	$:$	9	8	10	12	11	13	14	16	5

b. Find the least square fit of the form $y=a+b x^{2}$ to the following data

x	-1	6	1	2
y	2	5	3	0

(7 + 7 marks)
3. a. Find the rank correlation for the following data

x	56	42	72	36	63	47	55	49	38	42	68	60
y	147	125	160	118	149	128	150	145	115	140	152	155

b. Two random variables have the regression lines with equations $3 x+2 y=26$ and $6 x+y=31$. Find the mean values and the correlation coefficient between x and y .
4. a. Prove that $u_{0}+u_{1} x+u_{2} x^{2}+\ldots \infty=$

$$
\frac{u_{0}}{1-x}+\frac{x \Delta u_{0}}{(1-x)^{2}}+\frac{x^{2} \Delta^{2} u_{0}}{(1-x)^{3}}+\ldots \infty
$$

Hence sum the series $1.2+2.3 x+3.4 x^{2} \ldots \infty$
b. Find missing values in the following data:

x	45	50	55	60	65
y	3.0	$?$	2.0	$?$	-2.4

5. a. A curve passes through the point $(0,18),(1,10),(3,-18)$, $(6,90)$. Find the equation of the curve.
b. Solve $y_{n+2}-4 y_{n}=n^{2}+n+1 \quad(7+7$ marks $)$
6. a. The integers $0,1,1,2,3,5,8,13,21 \ldots$ are said to form a Fibonacci sequence. Form the Fibonacci difference equation and solve it.
b. A solid of revolution is formed by rotating about the axis, the area between the x axis, the lines $x=0$ and $x=1$ and a curve through the points with the following co-ordinates.

x	0.00	0.25	0.50	0.75	1.00
y	1	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the solid formed using Simpson's rule.
(7 + 7 marks)
7. a. Show that $(x \wedge y) \vee\left(x^{\prime} \wedge x\right)=\left(x^{\prime} \vee y\right) \wedge(x \vee z)$
b. Simplify $(x+y) \cdot x^{\prime} \cdot y^{\prime}$
(7 +7 marks)
8. a. Write an algorithm to find factorial of a numbers.
b. Write an algorith to sum the series of $\sin x . \quad(7+7$ marks $)$

